“Ω > 1”

“Sky-Notes” of the Open University Astronomy Club.

September 2019.

Forthcoming Meetings.

OUAC Clubnight.

OUAC “Clubnights” resume on Tuesday 3rd September.

BAA meetings.

Details of BAA meetings at: www.britastro.org

Other Meetings.

FAS 2019 Convention and AGM at the Institute of Astronomy, Madingley Road, Cambridge, from 9:45am on 14th September: event details and a link to buy tickets are available online at www.fedastro.org.uk

Highlights of the Month.

2nd. Mars in Conjunction with the Sun.

4th. Mercury at Superior Conjunction.

10th. Neptune at Opposition.

23rd. Equinox.

Mercury. Begins a poor evening apparition very low in the SW sky.

Venus. May be glimpsed as the month progresses very low in the SW evening sky.

Jupiter. Low in the SW evening twilight.

Saturn. Low in S to SW early evening sky.

Uranus. Well placed as it heads towards Opposition on October 28th.

Neptune. Well placed for nightlong observation.

Asteroid Lutetia (21). See notes below.

Comet C2018 W2 (AFRICANO). See notes below.

Recent Events.
If you have any images and/or reports of recent events please contact Sheridan so that he can put them on the Club website.

If you wish to present them at a “Clubnight” meeting please contact Sheridan or myself before the meeting starts.

Software.
A very useful item of Planetarium software is “Stellarium” and it’s FREE! Go to their website and download it and the associated user manual.
1. The Solar System.

Note all times shown are UT.
Add one hour when British Summer Time is in operation.

Earth.

Equinox (Autumnal for the Northern Hemisphere) 23rd 07h 51m.

Aurora.
Increasing hours of darkness improve the opportunity for observing potential aurora.
Keep tuned to the www.spaceweather.com site for updates.
Subscribe (free!) to the UK AuroraWatch website to receive alerts.

ISS.
The ISS has commenced a series of morning passes throughout the month.
Go to the “spaceweather” website and click the “Flybys” button and follow the instructions
to set-up forecasts for your location. Alternatively go to the “Heavens Above” website and
set-up for your location. Add to your “favourites”.

Sunrise and Sunset.

Bedford.
Latitude 52° 6.9’ N Longitude 0° 28.1’ W

<table>
<thead>
<tr>
<th>Date</th>
<th>Rise.</th>
<th>Transit.</th>
<th>Set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>05h 13m</td>
<td>12h 02m</td>
<td>18h 50m</td>
</tr>
<tr>
<td>08</td>
<td>05h 24m</td>
<td>11h 59m</td>
<td>18h 34m</td>
</tr>
<tr>
<td>15</td>
<td>05h 36m</td>
<td>11h 57m</td>
<td>18h 18m</td>
</tr>
<tr>
<td>22</td>
<td>05h 47m</td>
<td>11h 54m</td>
<td>18h 01m</td>
</tr>
<tr>
<td>29</td>
<td>05h 59m</td>
<td>11h 52m</td>
<td>17h 45m</td>
</tr>
</tbody>
</table>

Produced using “Starry Night Pro”.

The Sun.

Observing.
To prevent permanent damage to your eyes avoid looking at the Sun directly and never with
binoculars or a telescope unless special (expensive!) filters are used. The safest way is the simplest
– project the image of the Sun onto grey or white card.
If you have or have access to observe in h-alpha the rewards are much greater.
Ongoing very low activity. No sunspots since September 7th and that was miniscule!

Keep in touch with the Solar Dynamics Observatory satellite at http://sdo.gsfc.nasa.gov/
Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.
The Moon.

Phases:

Produced using “LunarPhase Pro”.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
<td>Saturday</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Quarter. 06\(^{d}\) 03\(^{h}\) 12\(^{m}\)
Full. 14\(^{d}\) 04\(^{h}\) 34\(^{m}\)
Last Quarter. 22\(^{d}\) 02\(^{h}\) 42\(^{m}\)
New. 28\(^{d}\) 18\(^{h}\) 28\(^{m}\)

Apsides:
- Apogee 13\(^{d}\) 13\(^{h}\) Diameter. 29’ 54 Distance. 406,377km.
- Perigee 28\(^{d}\) 02\(^{h}\) Diameter. 33’ 24” Distance. 357,805km.

Observing.

For northern observers:
The waxing crescent Moon is not well placed.
The waxing gibbous Moon is less well placed.
The Full Moon is becoming well placed.
The waning gibbous Moon is very well placed.
The waning crescent Moon is very well placed.
The Moon.
Observing cont.
Observe the regions along the terminator (sunrise and sunset on the Moon) where the low angle of the Sun highlights lunar topography. A basic lunar map is all you need to get started. Sky & Telescopes “Lunar 100 Card” is another good starting point. If you are starting out on photography and/or imaging the Moon provides an excellent target.

Observing and Imaging opportunities.
On 1st and 29th/30th try locating the very thin crescent Moon WSW evening twilight after sunset.
On 26th and 27th try locating the very thin crescent Moon very low in the E dawn skies before sunrise.
Clear September predawn skies provide excellent opportunities to image the waning gibbous and waning crescent Moon.
If you can take images of the above so much the better.

Lunar Occultations.
Unlike the gradual disappearance of a planet (small disc) a star vanishes instantly demonstrating that it is a point source of light as viewed from the earth. For all occultation events start observing 10 to 15 minutes before the predicted time to identify the required star and to allow for slightly different time if you are not at Greenwich. Use an accurate watch to record the time that you observe the occultation remembering that times are UT not BST. Enter details in your observing log.

Details of occultations can be found in current BAA Handbook and monthly periodicals such as Astronomy Now and Sky at Night.
The Planets.

Although not visible during the first week of September Mercury, Venus and Mars may be followed on the SOHO LASCO C3 daily images.

Mercury.

Superior Conjunction on 2nd.
Commences a poor evening apparition for N observers and will be very difficult to spot as it hugs the W horizon after sunset throughout the month.
Very close to Venus on 13th.
Moon close on 29th.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mag</th>
<th>Dia.</th>
<th>Phase</th>
<th>Rise.</th>
<th>Transit.</th>
<th>Set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>-0.9</td>
<td>4.9”</td>
<td>0.97</td>
<td>06h 17m</td>
<td>12h 29m</td>
<td>18h 41m</td>
</tr>
<tr>
<td>30</td>
<td>-0.2</td>
<td>5.2”</td>
<td>0.86</td>
<td>07h 58m</td>
<td>13h 00m</td>
<td>18h 07m</td>
</tr>
</tbody>
</table>

Venus.

Throughout the month it hugs the W horizon after sunset and will be very difficult to spot.
Very close to Mercury on 13th.
Moon close on 29th.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mag</th>
<th>Dia.</th>
<th>Phase</th>
<th>Rise.</th>
<th>Transit.</th>
<th>Set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>-3.9</td>
<td>9.8”</td>
<td>0.99</td>
<td>06h 17m</td>
<td>12h 30m</td>
<td>18h 42m</td>
</tr>
<tr>
<td>30</td>
<td>-3.9</td>
<td>10”</td>
<td>0.98</td>
<td>07h 12m</td>
<td>12h 40m</td>
<td>18h 08m</td>
</tr>
</tbody>
</table>

Mars.

Not observable.
Conjunction with the Sun on 2nd.
Moon close on 27th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The Mars \textbf{Curiosity} rover continues its explorations returning excellent data and images. Mission details and progress are on the appropriate NASA website.

Jupiter.

Low in the SW evening twilight.
Low declination does not favour N observers.
Moon close on 5th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-2.2</td>
<td>39”</td>
<td>14h 18m</td>
<td>18h 15m</td>
<td>22h 12m</td>
</tr>
<tr>
<td>30</td>
<td>-2.0</td>
<td>36”</td>
<td>12h 39m</td>
<td>16h 34m</td>
<td>20h 28m</td>
</tr>
</tbody>
</table>
Saturn.
Low in the S to SW evening twilight skies.
Low declination does not favour N observers.
Moon very close on 8th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+0.3</td>
<td>18”</td>
<td>16h 25m</td>
<td>20h 20m</td>
<td>00h 16m</td>
</tr>
<tr>
<td>30</td>
<td>+0.5</td>
<td>17”</td>
<td>14h 31m</td>
<td>18h 26m</td>
<td>22h 21m</td>
</tr>
</tbody>
</table>

Uranus.
Becoming well placed for observation as it heads towards **Opposition on 24th October**.
Moon close on 17th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+5.7</td>
<td>3.7”</td>
<td>19h 57m</td>
<td>02h 45m</td>
<td>09h 37m</td>
</tr>
<tr>
<td>30</td>
<td>+5.7</td>
<td>3.7”</td>
<td>18h 01m</td>
<td>00h 52m</td>
<td>07h 38m</td>
</tr>
</tbody>
</table>

Neptune.
At **Opposition on 10th**.
Well placed for nightlong observation.
Very close to Phi Aqr (+4.2) at the start of the month, passing just S on 5th/6th.
Imaging opportunities!
Moon close on 13th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+7.8</td>
<td>2.4”</td>
<td>19h 02m</td>
<td>00h 38m</td>
<td>06h 11m</td>
</tr>
<tr>
<td>30</td>
<td>+7.8</td>
<td>2.4”</td>
<td>17h 07m</td>
<td>22h 37m</td>
<td>04h 12m</td>
</tr>
</tbody>
</table>

At mag +13.5 **Triton**, Neptune’s largest satellite, provides a good challenge for 8” Telescopes under favourable sky conditions and when it is at max elongation E or W of Neptune. Use a high magnification - x200 or greater. Use “Stellarium” (Freeware) or similar software to determine favourable E and W elongations.

Dwarf Planets.
Ceres.

Eris (2003 UB313).
A mag +18.7 CCD starget located in Cetus.

Haumea.
A mag +17.3 CCD target located in Bootes. Becoming lost in WNW evening twilight.

MakeMake.
A mag +17 CCD target in Coma Berenices. Becoming lost in WNW evening twilight.

Pluto.
A 14th mag object located in Sagittarius. Low in the S mid-evening sky.
Asteroids. (Approx magnitude +10.5 or brighter).

Vesta (4).
A 7th mag object located in Taurus.

Hertha (135).
Located in Aquarius about 4° W of Neptune. Mag +9.5 at Opposition on 6th.

Lutetia (21).
Located in Cetus. Mag +9.4 at Opposition on 28th. This comet was imaged on 10 July 2010 by the ROSSETTA comet probe. Worth an image of your own.

Charts and details of asteroids one month either side of opposition are available at: http://britastro.org/computing/charts_asteroid.html

See also the *BAA Handbook* and/or monthly periodicals.

Comets.

C2018 W2 (AFRICANO).
Probably about 10th mag and very well placed for N observers as it moves through Perseus, Andromeda and Pegasus during the month. Useful article in September issue of *Astronomy Now* magazine.
An evening object heading towards perihelion on 9th October.

C2017 T2 PanSTARRAS.
Currently moving through Taurus and into Auriga at the end of the month. Predicted to be 11th mag but may be brighter. Comets are Fickle things!
It will pass closest to the Earth at the end of December when it will be very well placed in Perseus.
Perihelion is not reached until 4 May 2020 so this comet will be worth following!
Useful article in September issues of *Astronomy Now* and *Sky at Night* magazines.

Charts and details of selected comets are available at: http://britastro.org/computing/charts_comet.html

See also the *BAA Handbook* and/or monthly periodicals.

Meteor Showers.
The **Piscids** are active during September and October. Weak activity from with three peaks on 9th September, ZHR = 10; 21st September, ZHR = 5; 13th October, ZHR = ?

There are always **Sporadic** events and the chance of a brilliant fireball. The latter should be recorded and reported. See earlier note for using Iridium Flares as magnitude comparisons. for “Bright Events”.

Near Earth Objects.
Please refer to www.spaceweather.com for updates.

Eclipses.
No Lunar or Solar eclipses this month.

Abbreviations used.

M = Messier object. (Shown in bold).
NGC = New General Catalogue. IC = Index Catalogue. (Extension of the NGC).
ds = double star. ts = triple star. ms = multiple star. vs = variable star.
gc = globular cluster. oc = open cluster. pn = planetary nebula.
en = emission nebula. rm = reflection nebula. sg = spiral galaxy.
eg = elliptical galaxy. lg = lenticular galaxy. ir = irregular galaxy.
pg = peculiar galaxy. snr = super nova remnant. ly = light year.

The magnitude of an object, excluding double, triple, multiple and variable stars, is shown in brackets e.g. (6.5).
All magnitudes are + unless otherwise shown.

2.1 Variable Stars of the month.

Beta (β) Persei, Algol. Range 2.2 to 3.4, period 2.7 days. Becoming better placed for observation in the “early hours”. Suitable minima occur on 12d 23h 20.5m.

Delta (δ) Cephei. Range 3.5 to 4.4, period 5.37 days. The prototype for the Cepheid class of variable stars. Their period-luminosity relationship has led them to being used as “standard candles” in measuring distances to nearby galaxies.

Mu (μ) Cephei. Range 3.7 to 5.0, approximate period 755 days. A semi-regular variable star famous for its striking red colour being fittingly called “Herschel’s Garnet Star”. It is the reddest naked eye star visible from the northern hemisphere. Its colour may show signs of variability.

2.2 Double Stars of the month.

Zeta Aqr. See notes below.
94 Aqr. See notes below.
Alpha1&2 Cap. See notes below.
Delta Cep. See notes below.
Struve (Σ) 2816 & 2819 Cep. See notes below.
Struve (Σ) 2840 Cep. See notes below.
Gamma Del. See notes below.
8 Lac. Quadruple system. See notes below.
Eta Peg. See notes below.
Pi1&2 Peg. See notes below.
57 Peg. See notes below.
2.3 This Month’s Constellations - Double Stars/Star Clusters/Nebulae/Galaxies.

Aquarius (Aqr).

Beta (β) is a triple star (2.9, 10.8 and 11.4, sep 35.4" and 57.2" from primary).
Zeta (ζ) ds (4.3, 4.5 sep 2.1". Probably requires a 6" telescope to split this pair of white stars. Larger apertures may shown them as yellowish.
ψ1 ds (4.5, 10.8, sep 49.6"). Medium power reveals a wide pair of orange stars.
 centre. Begins to resolve in apertures greater than 10”.
94 ds (5.3, 7.2, sep 12”). Fine pale red/pale green.
NGC6981 (M72) (9.3) gc. A distant cluster. Rather loose concentration and difficult to resolve.
NGC6994 (M73) (8.9) Asterism of 4 stars. Identify for curiosity to add to your Messier collection.
NGC7009 (8.3) pn "Saturn Nebula". Fine blue/green oval object in moderate aperture telescopes.
Larger apertures reveal the faint antennae and hence the name. The Central star is visible in 16” telescopes.
NGC7089 (M2) (6.5) gc. Showpiece object! Bright compressed halo with bright core.
NGC 7293 (6.5) pn "Helix Nebula". RA 22h 29.6m Dec -20° 29.6m. It is possibly the nearest planetary nebula to us and hence its large angular size of 770". However it requires a dark site when even binoculars/low power small telescope should reveal its ghostly outline.
NGC7606 (10.8) sg. Faint elongated halo with brighter centre. Stellar nucleus visible in 12”+ apertures.

Capricornus (Cap).

α1 (4.2) and α2 (3.6) form a fine "line of sight" yellow double star visible to the naked eye and a fine view in binoculars. α1 has two physical companions (9.2 and 13.7). α2 has a magnitude 11 reddish companion.
β (3.4, 6.2 sep. 205”). ds. Deep yellow primary with white secondary situated in rich field of faint stars.
ο (6.1, 6.6 sep. 22”) ds. A fine double of blue-white and blue stars.
σ (5.5, 9.0 sep. 56") ds. A fine double. Deep yellow primary with pale blue secondary.
NGC7099 (M30) (7.5) gc. Fine object unfortunately not well seen from the UK.

Cepheus (Cep).

Delta (δ) Cephei, 3.5 to 4.4 over a period 5.37 days, is the prototype for the Cepheid class of variable stars which because of their period-luminosity relationship has lead them to being used as "standard candles" in measuring distances to nearby galaxies. Pale blue +6.1 companion. Two types of object for the price of one!
Mu (μ) Cephei 3.7 to 5.0 approximate period 755 days is a semi-regular variable star. It is more famous for its striking red colour being fittingly called "Herschel’s Garnet Star". It is the reddest naked eye star visible from the northern hemisphere. Its colour may show signs of variability.
Struve (Σ) 2816 ts (5.7/7.5/7.5, sep 12’/20’). Fine triple with Struve (Σ) 2819 ds (7.4/8.6, sep 13”) in same field. All contained in the large, sparse and nebulous open cluster IC 1396!
Struve (Σ) 2840 ds (5.6/6.4, sep 18’). Very fine greenish/bluish pair.
Open clusters - NGC188 (8.1), NGC6939 (7.8), NGC7510 (7.9), NGC7762(10.0). Planetary Nebula NGC40 (10.7).
Spiral galaxy NGC6946 (8.9) in the same 1degree field as oc NGC6939.
The faint reflection nebula NGC7023 and emission nebula IC 1396 provide a challenge to the observer. A dark clear sky is essential.
Delphinus (Del).

β (4.0, 4.9 sep. 0.3”) ds. Visible with small telescope using high power.
κ (5.1, 11.7 sep. 28.8”) ts.
γ (4.5, 5.5 sep. 9.6”) ds. A fine double. Primary yellow, secondary green.

NGC6891 (10.5) pn. RA 20h 10.5m Dec +16° 55m. Central magnitude +12.4 star.
NGC6905 (11.1) pn.
NGC6934 (8.9) gc.
NGC7006 (10.6) gc.

Draco (Dra).

Alpha (α) Thuban. Although only a third magnitude object, 5000 years ago Thuban held the distinction of being the Pole Star. Its designation alpha is strange as it is only the seventh brightest star in the constellation.
Mu (μ) ds. 5.6/5.7; separation 1.9”. Pair of white stars.
Nu (ν) ds. 4.9/4.9; separation 61.9”. Pair of bright white stars.
Psi (ψ) ds. 4.9/6.1; separation 30.3”. Pair of yellowish stars.
16 & 17 ds. 5.4/5.5; separation 90.3”. Pair of bright white stars.
40 & 41 ds. 5.7/6.1; separation 19.3”. Pair of pale yellow stars.
Struve (Σ) 2155 ds. 6.8/10.1; separation 9.8”. Pale yellow and blue pair.
NGC4236 (9.6) sg. Seen almost edge and low surface brightness makes it a test for moderate apertures.
NGC4319 (11.9) sg. Elongated haze with prominent core. A Quasar, Makarian 205 (14.5) lies 40” to the south.
NGC5866 (M102) lg. Elongated object. One of the “missing” Messier objects.
NGC5907 (10.3) sg. Thin needle of light. A fine edge-on galaxy.
NGC6503 (10.2) sg. Distinctly elongated.
NGC6543 (8.1) pn. The “Cats Eye Nebula”. Bright small disc with greenish tint. 11th magnitude central star. Draco’s “Showpiece object”.

Equuleus (Equ).

The second smallest of the 88 constellations. It contains no notable deep sky objects.
Epsilon (ε) (6.0, 7.1 sep 10.7”) ds. Pale yellow primary with blue companion giving pleasant contrast. The primary is itself a close double approaching periastron in 2021. High power may show it as elongated.
Lambda (λ). (7.4, 7.4 sep 2.8”) ds. Matched pair of pale yellow stars.
Struve (Σ) 2786 (7.2, 8.3 sep 2.5”) ds. Pair of white stars.
Struve (Σ) 2793 (7.8, 8.5 sep 26.6”) ds. Yellow primary with blue companion. The primary is an unresolved double.
NGC7015 (11.5) sg. Faint halo with brightening towards the centre.

Lacerta (Lac).

Struve (Σ) 2876 (7.8, 9.3 sep 11.8”) ds. Fine blue and white double.
Struve (Σ) 2894 (6.1, 8.3 sep. 15.6”) ds. Yellow primary, blue secondary.
Struve (Σ) 2902 (7.6, 8.5 sep. 6.4”) ds. Yellow and white double.
8 Lacertae = Struve (Σ) 2922 (5.7, 6.5 sep. 22.4”) Multiple star. Brightest four components are white/blueish white. Has been described as a poor open cluster.
O Struve (Σ) 475 (6.8, 10.8 sep. 15.5”) ds. White primary with faint blue companion.
BL Lacertae (14 to 17). Prototype for class of quasi-stellar object (QSO).
Pegasus (Peg).

Eta (η) 2.9/9.9 separation 90.4". Binocular object. Yellow and blue components but telescope require to see colour of secondary. Herscel’s “Pendulum Star” - tap telescope gentle for the effect. Pi^1/Pi^2 (π^1/π^2) 5.6/4.3 separation 7’). Fine binocular object. Pi^1 is a multiple system with 4 companions of 10^{th} to 12^{th} magnitude.

57 Pegasi. 5.1/9.7 separation 32.6". Beautiful orange primary with blue companion. NGC7078 (M15) (6.3) gc superb object. NGC7331 (9.5) sg. Seen almost edge on.

About half a degree south is the fascinating group of galaxies "Stephan's Quintet". The brightest member of the group is NGC7320 (12.7).

Many happy hours can be spent wandering around "The Square" to locate many moderately bright galaxies. Use a star atlas such as the excellent "Sky Atlas 2000" to plan your journey.

P.V.H.