“Ω > 1”

Monthly “Sky-Notes” of the
Open University Astronomy Club.

November 2018.

Recent Events.

If you have any images and/or reports of recent events please contact Sheridan so that he can put them on the Club website.
If you wish to present them at a Clubnight meeting please contact Sheridan or myself before the meeting starts.

Forthcoming Meetings.

OUAC Clubnight.

The next OUAC “Clubnight” is on Tuesday 6th November.

BAA meetings.

Details of BAA meetings at: www.britastro.org

Highlights of the Month.

5th & 12th Peaks of the Taurids meteor shower which is active throughout the month.
6th Mercury reaches Greatest Elongation E (23º).
17th Peak of Leonids meteor shower. Favourable after the Moon has set.
17th Asteroid Juno at Opposition.
26th Jupiter in Conjunction with Sun.
27th Mercury at Inferior Conjunction.

Mercury is difficult to spot low in the SW evening twilight.
Venus very low in ESE dawn sky at beginning of month. Rapidly gains height to dominate the predawn/dawn sky as the month progresses.
Mars is slowly gaining height low in the S to SW evening sky.
Jupiter lost in the SW sky after sunset as it moves towards Conjunction.
Saturn low in SW early evening sky.
Uranus is well placed for evening and early hour observation.
Neptune is well placed for evening observation.

Software.

A very useful item of Planetarium software is “Stellarium” and it’s FREE!
Go to their website and download it and the associated user manual.
1. The Solar system.

Note all times shown are UT.
Add one hour when British Summer Time is in operation.

Earth.

Aurora.
Long hours of darkness improve the opportunity for observing potential aurora.
Keep tuned to the www.spaceweather.com site for updates.
Subscribe (free!) to the UK AuroraWatch website to receive alerts.

ISS.
The ISS continues a series of morning passes during the first half of the month.
Go to the “spaceweather” website and click the “Flybys” button and follow the instructions
to set-up forecasts for your location. Alternatively go to the “Heavens Above” website and
set-up for your location. Add to your “favourites”.

Iridium Flares.
These satellites produce short lived “Bright events”. Some are very bright in the order of
magnitude -8. Take a wide-field image of with an exposure of 20 – 30 seconds to capture an
event. Regular observing of events brighter than -4 will provide useful practice for
estimating the magnitude of very bright meteors and Fireballs. Go to the “Heavens Above”
website and set-up for your location for predictions. Add to your “favourites”.

These satellites are now being phased out and will be allowed to “tumble” and burn-up
in the Earth’s atmosphere. Predictions for IFs will cease so make the most of
opportunities over the next few months.

Sunrise and Sunset.

Bedford.
Latitude 52° 6.9’N Longitude 0° 28.1’W

<table>
<thead>
<tr>
<th>Date</th>
<th>Rise</th>
<th>Transit</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>06h 57m</td>
<td>11h 45m</td>
<td>16h 33m</td>
</tr>
<tr>
<td>08</td>
<td>07h 09m</td>
<td>11h 45m</td>
<td>16h 21m</td>
</tr>
<tr>
<td>15</td>
<td>07h 22m</td>
<td>11h 46m</td>
<td>16h 10m</td>
</tr>
<tr>
<td>22</td>
<td>07h 34m</td>
<td>11h 48m</td>
<td>16h 02m</td>
</tr>
<tr>
<td>29</td>
<td>07h 45m</td>
<td>11h 50m</td>
<td>15h 55m</td>
</tr>
</tbody>
</table>

Produced using “Starry Night Pro”.

The Sun.

Observing.

To prevent permanent damage to your eyes avoid looking at the Sun directly and never with binoculars or a telescope unless special (expensive!) filters are used. The safest way is the simplest – project the image of the Sun onto grey or white card. Take care if your telescope has any plastic components in its optical path. Plastic melts!

Currently (29th October) very low activity with no sunspot groups.
If you have or have access to observe in h-alpha the rewards are much greater.

Keep in touch with the Solar Dynamics Observatory satellite at http://sdo.gsfc.nasa.gov/
Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td>A day after Apogee. Image if possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

<table>
<thead>
<tr>
<th>Phases</th>
<th>07d 16h 03m</th>
<th>15d 14h 55m</th>
<th>23d 05h 40m</th>
<th>30d 00h 20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produced using “LunarPhase Pro”.

Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.
The Moon continued.

Apsides:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Diameter.</th>
<th>Distance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apogee</td>
<td>14d 15h</td>
<td>29’ 22”</td>
<td>404,340km.</td>
</tr>
<tr>
<td>Perigee</td>
<td>26d 12h</td>
<td>33’ 00”</td>
<td>366,624km.</td>
</tr>
</tbody>
</table>

Observing.

For northern observers:
- The waxing crescent Moon is not well placed.
- The waxing gibbous Moon is well placed.
- The Full Moon is very well placed.
- The waning gibbous Moon is very well placed.
- The waning crescent Moon is well placed.

Observe the regions along the terminator (sunrise and sunset on the Moon) where the low angle of the Sun highlights lunar topography. A basic lunar map is all you need to get started. *Sky & Telescopes* “Lunar 100 Card” is another good starting point. The Moon provides an excellent target if you are starting out on astronomical photography and/or imaging.

Imaging and Observing Opportunities.

On 5th and 6th try locating the very thin crescent Moon very low in the E dawn skies before sunrise. On 8th and 9th try locating the very thin crescent Moon very low in SW evening twilight after sunset.

Predawn observation and/or imaging will be well rewarded early in the month when the waning crescent Moon and later in the month when the waning gibbous Moon are well placed.

If you can take images of the above so much the better.

Lunar Occultations.

Unlike the gradual disappearance of a planet (small disc) a star vanishes instantly demonstrating that it is a point source of light as viewed from the earth. For all occultation events start observing 10 to 15 minutes before the predicted time to identify the required star and to allow for slightly different time if you are not at Greenwich. Use an accurate watch to record the time that you observe the occultation remembering that times are UT not BST. Enter details in your observing log.

Details of occultations can be found in current *BAA Handbook* and monthly periodicals such as *Astronomy Now* and *Sky at Night*. 
The Planets.

Mercury.
Continues a poor evening apparition for northern observers as it hugs the SW horizon.
Greatest Elongation E (23°) on 6th.
Inferior Conjunction on 27th.
Moon close on 9th.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mag.</th>
<th>Dia.</th>
<th>Phase</th>
<th>Rise</th>
<th>Transit</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-0.20</td>
<td>6.0”</td>
<td>0.73</td>
<td>09h 22m</td>
<td>13h 14m</td>
<td>17h 07m</td>
</tr>
<tr>
<td>15</td>
<td>+0.25</td>
<td>8.1”</td>
<td>0.37</td>
<td>09h 30m</td>
<td>13h 10m</td>
<td>16h 50m</td>
</tr>
</tbody>
</table>

Venus.
Reappearing low in SE dawn sky.
Observe and/or image the rapidly waxing thin crescent with corresponding decrease in apparent diameter.
Close to Spica mid-month.
Moon close on 6th.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mag.</th>
<th>Dia.</th>
<th>Phase</th>
<th>Rise</th>
<th>Transit</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-4.1</td>
<td>60”</td>
<td>0.02</td>
<td>06h 26m</td>
<td>11h 02m</td>
<td>15h 39m</td>
</tr>
<tr>
<td>30</td>
<td>-4.7</td>
<td>41”</td>
<td>0.25</td>
<td>04h 02m</td>
<td>09h 14m</td>
<td>14h 26</td>
</tr>
</tbody>
</table>

Mars.
Prominent object slowly gaining height in the S to SW evening sky.
Slowly fading with corresponding reduction in apparent diameter as Earth – Mars distance increases.
Distinctly gibbous phase.
Moon close on 16th.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mag.</th>
<th>Dia.</th>
<th>Phase</th>
<th>Rise</th>
<th>Transit</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-0.6</td>
<td>12”</td>
<td>0.86</td>
<td>14h 22m</td>
<td>18h 57m</td>
<td>23h 32m</td>
</tr>
<tr>
<td>30</td>
<td>-0.1</td>
<td>9.3”</td>
<td>0.86</td>
<td>12h 54m</td>
<td>18h 09m</td>
<td>23h 25m</td>
</tr>
</tbody>
</table>

The Mars Curiosity rover continues its explorations returning excellent data and images.
Contact with the “Dust covered” Opportunity rover is still to be re-established.
Mission details and progress are on the appropriate NASA websites.

Jupiter.
Lost in the SW bright evening twilight.
Conjunction on 26th.
Moon very close on 8th.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mag.</th>
<th>Dia.</th>
<th>Rise</th>
<th>Transit</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-1.7</td>
<td>31”</td>
<td>08h 46m</td>
<td>13h 04m</td>
<td>17h 22m</td>
</tr>
<tr>
<td>08</td>
<td>-1.7</td>
<td>31”</td>
<td>08h 27m</td>
<td>12h 43m</td>
<td>16h 59m</td>
</tr>
</tbody>
</table>
Saturn.
Low in SW early evening sky.
Moon close on 11th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+0.6</td>
<td>16”</td>
<td>11h 46m</td>
<td>15h 40m</td>
<td>19h 34m</td>
</tr>
<tr>
<td>30</td>
<td>+0.5</td>
<td>15”</td>
<td>10h 04m</td>
<td>13h 58m</td>
<td>17h 52m</td>
</tr>
</tbody>
</table>

Uranus.
Located in Pisces and well placed for long hours of observation.
Moon close on 20th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+5.7</td>
<td>3.7”</td>
<td>16h 10m</td>
<td>23h 10m</td>
<td>06h 15m</td>
</tr>
<tr>
<td>30</td>
<td>+5.7</td>
<td>3.7”</td>
<td>14h 14m</td>
<td>21h 12m</td>
<td>04h 15m</td>
</tr>
</tbody>
</table>

Neptune.
Well placed in the SW for early to mid evening observation.
Moon close on 17th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+7.9</td>
<td>2.3”</td>
<td>14h 54m</td>
<td>20h 20m</td>
<td>01h 49m</td>
</tr>
<tr>
<td>30</td>
<td>+7.9</td>
<td>2.3”</td>
<td>13h 00m</td>
<td>18h 25m</td>
<td>23h 50m</td>
</tr>
</tbody>
</table>

At mag +13.5 Neptune’s largest satellite Triton provides a good challenge for 8” telescopes under favourable sky conditions and when Triton is at max elongation E or W of Neptune. Use a high magnification - x200 or greater. Use “Stellarium” (Freeware) or similar software to determine favourable E and W elongations.

Dwarf Planets.

**Ceres.**
Located in Virgo Mag +8.2 emerging into the predawn E sky during the month. Thin crescent Moon very close on 6th.

**Eris.**
A mag +18.7 target located in Cetus.

**Haumea.**
A mag +17.3 CCD target located in Bootes, about 5º W of Arcturus. Becoming lost in WNW evening twilight.

**MakeMake.**
A mag +17 CCD target in Coma Berenices. Low in the E predawn skies.

**Pluto.**
Mag +14.5 object located in Sagittarius. Sinking into the early evening SW sky.
Asteroids. (Approx mag +10.5 or brighter).

**Vesta (4).** A 7th mag object low in the S to SW evening sky moving through E Sagittarius.

**Juno (3).** Located in Eridanus. Mag +7.4 at opposition on 17th.

**Victoria (12).** Located in Taurus. Mag +10.1 at opposition on 22nd.

**Semiramis (584).** Located in Perseus. Mag +10.6 at opposition on 23rd.

Charts and details of asteroids one month either side of opposition are available at: [http://britastro.org/computing/charts_asteroid.html](http://britastro.org/computing/charts_asteroid.html)

See also the *BAA Handbook* and/or monthly periodicals.

Comets.

**Comet 38P/Stephan-Ortema.** This comet has a period of 38 years and reaches perihelion on 10th when it could be a 9th magnitude object. It tracks northeast through Gemini passing very close to NGC2392 “The Eskimo Nebula” on 8th/9th providing a great imaging opportunity – if clear! Worth getting up for!

**Comet 46P/Wirtanen.** Too far south for northern observers at the start of the month. However the situation gradually improves during November as it heads towards perihelion on December 12th when it could be a 4th magnitude naked eye object.

Charts and details of selected comets are available at: [http://britastro.org/computing/charts_comet.html](http://britastro.org/computing/charts_comet.html)

See also the *BAA Handbook* and/or monthly periodicals.

Meteor Showers.

The **Taurids** continue activity during November. Double radiant with two peaks on 5th (S) - ZHR = 10, and 12th (N) - ZHR = 10. Slow meteors with “bright events” possible. Favourable as little interference from Moonlight.

The **Leonids** are active from the 15th to 20th with narrow peak activity on 18th 01h, ZHR = 20. Favourable as little interference from Moonlight.

There are always **Sporadic** events and the chance of a brilliant fireball. The latter should be recorded and reported. See earlier note for using Iridium Flares as magnitude comparisons for “Bright Events”.

Near Earth Objects.

Please refer to [www.spaceweather.com](http://www.spaceweather.com) for updates.

Eclipses.

No Eclipses this month.

Abbreviations used.
M = Messier object. (Shown in bold).
NGC = New General Catalogue. IC = Index Catalogue. (Extension of the NGC).
ds = double star. ts = triple star. ms = multiple star. vs = variable star.

2.1 Variable Stars of the month.
Beta (β) Persei, Algol. Range 2.2 to 3.4, period 2.7 days. Well placed for evening observation. Minima at “social hours” occur on 14d 22.3h and 17d 19.1h.
Delta (δ) Cephei. Range 3.5 to 4.4, period 5.37 days. The prototype for the Cepheid class of variable stars. Their period-luminosity relationship has led them to being used as “standard candles” in measuring distances to nearby galaxies.
Mu (μ) Cephei. Range 3.7 to 5.0, approximate period 755 days. A semi-regular variable star famous for its striking red colour being fittingly called “Herschel’s Garnet Star”. It is the reddest naked eye star visible from the northern hemisphere. Its colour may show signs of variability.
Omicron (ο) Cet, “Mira”. Slowly brightening from +9.3 when at minimum in July/August.

2.2 Double Stars of the month.
Gamma And. See notes below.
Gamma Ari. See notes below.
Struve (Σ) 326 Ari. See notes below.
Alpha Cas. See notes below.
Iota Cas. See notes below.
Eta Cas. See notes below.
Sigma Cas. See notes below.
Delta Cep. See notes below.
Struve (Σ) 2816 & 2819 Cep. See notes below.
Struve (Σ) 2840 Cep. See notes below.
8 Lac. Quadruple system. See notes below.
Eta Peg. See notes below.
Pi 1&2 Peg. See notes below.
57 Peg. See notes below.
Zeta Psc. See notes below.
35 Psc. See notes below.
51Psc. See notes below.
Iota Tri. See notes below.
Struve (Σ) 239 Tri. See notes below.
2.3 This Month’s Constellations - Double Stars/Star Clusters/Nebulae/Galaxies.

**Andromeda (And).**
Gamma (γ) Almach (2.2, 5.1) is a fine double star. The brighter component is golden-yellow with its companion a greenish-blue. Arguably second only to Albiro in Cygnus.
NGC205 (M110) (8.0) eg. A satellite galaxy of M31 visible as an elongated "smudge" in small telescopes.
NGC221 (M32) (8.2) eg. A satellite galaxy of M31. Visible as a fuzzy star in small telescopes.
NGC224 (M31) (3.5) sg. The Great Andromeda Spiral Nebula. Increasing aperture reveals more and more detail although increasingly smaller areas of the galaxy fill the eyepiece. 8" telescopes should reveal NGC206 as a hazy patch. It is a large area of star formation. 12" scopes will reveal one or two of M31’s large population of globular clusters.
NGC404 (11.9) lg. Located 6′ NW of β And. The 2nd magnitude star tends to drown the faint glow of the galaxy. Use high power to push the star out of the field of view for best results.
NGC752 (5.7) oc This large open cluster is located about 4 degrees south of γ.
NGC891 (10.1) sg. Located about 3 degrees east of γ is seen almost edge on. Bright central bulge. Moderate apertures will reveal a narrow dust lane bisecting the long axis. A fine object.
NGC7640 (12.5) sg. Seen nearly edge-on.
NGC7662 (8.6) pn. "The Blue Snowball". Rather small making it difficult to distinguish from nearby faint stars. High magnification on an 8" telescope will reveal an elliptical ring with a dark centre. Large apertures will show a faint second outer ring of nebulosity and the 13th magnitude central star.

**Aries (Ari).**
Gamma (γ) (4.8/4.8 separation 7.7") ds. Fine equally bright bluish-white pair of stars. Accidentally discovered by Robert Hooke in 1664 while searching for a comet.
Lambda (λ) (4.9/7.7 sep. 37.4") ds. Wide pair of pale yellow and pale blue stars.
Struve (Σ)326. (7.6/9.8 sep. 5.9") ds. Beautiful orange and dull red pair of stars.
NGC772 (10.3) sg. Located almost 2° ESE of γ.
NGC877 (11.9) sg.
NGC972 (11.4) sg.

**Cassiopeia (Cas).**
Alpha (α) (2.2/8.9 sep. 64.4") ds. Fine orange and blue pair. Part of a multiple system.
Iota (ι) (4.6/6.9/8.4 sep. AB 2.5", AC 7.2") ts. Beautiful white, yellow and blue triple system.
Eta (η) (3.4/7.5 sep. 12.9") ds. Superb gold and garnet pair. The colours are very subjective. What do you see?
Sigma (σ) (5.0/7.1 sep. 3.0") ds. Bluish white and yellow pair in a superb field.
NGC129 (6.5) oc.
NGC147 (9.3) eg. A satellite galaxy of M31.
NGC185 (9.2) eg. A satellite galaxy of M31.
NGC278 (10.9) eg. Located a few degrees SE of NGC185.
NGC457 (6.4) oc.
NGC7789 (6.7) oc.
IC1805 (6.5) oc.
IC1848 (6.5) oc.
**Cepheus (Cep).**
Delta (δ) Cephei, 3.5 to 4.4 over a period 5.37 days, is the prototype for the Cepheid class of variable stars which because of their period-luminosity relationship has lead them to being used as "standard candles" in measuring distances to nearby galaxies. Pale blue +6.1 companion.
Mu (µ) Cephei 3.7 to 5.0 approximate period 755 days is a semi-regular variable star. It is more famous for its striking red colour being fittingly called "Herschel’s Garnet Star". It is the reddest naked eye star visible from the northern hemisphere. Its colour may show signs of variability.
Struve (Σ) 2816 ts (5.7/7.5/7.5, sep 12”/20”). Fine triple with Struve (Σ) 2819 ds (7.4/8.6, sep 13”) in same field. All contained in the large, sparse and nebulous open cluster IC 1396!
Struve (Σ) 2840 ds (5.6/6.4, sep 18”). Very fine greenish/bluish pair.
Open clusters - NGC188 (8.1), NGC6939 (7.8), NGC7510 (7.9), NGC7762 (10.0). Planetary Nebula NGC40 (10.7).
Spiral galaxy NGC6946 (8.9) in the same 1° field as oc NGC6939. Two types of object for the price of one!
The faint reflection nebula NGC7023 and emission nebula IC 1396 provide a challenge to the observer. A dark clear sky is essential.

**Lacerta (Lac).**
Struve (Σ) 2876 (7.8, 9.3 sep 11.8”) ds. Fine blue and white double.
Struve (Σ) 2894 (6.1, 8.3 sep. 15.6”) ds. Yellow primary, blue secondary.
Struve (Σ) 2902 (7.6, 8.5 sep. 6.4”) ds. Yellow and white double.
8 Lacertae = Struve (Σ) 2922 (5.7, 6.5 sep. 22.4”) Multiple star. Brightest four components are white/blueish white. Has been described as a poor open cluster.
O Struve (Σ) 475 (6.8, 10.8 sep. 15.5”) ds. White primary with faint blue companion.
BL Lacertae (14 to 17). Prototype for class of quasi-stellar object (QSO).

**Pegasus (Peg).**
Eta (η) 2.9/9.9 separation 90.4”. Binocular object. Yellow and blue components but telescope required to see colour of secondary. Herschel’s “Pendulum Star” - tap telescope gently for the effect.
Pi^1/Pi^2 (π^1/π^2) 5.6/4.3 separation 7’. Fine binocular object. Pi^1 is a multiple system with 4 companions of 10th to 12th magnitude.
51 Pegasi (5.5). Identify this star for interest as the first sun-like star discovered in October 1995 to have an “exoplanet”. The planet was original named “51 Pegasi b” but in December 2015 following a process of public nomination the IAU announced the winning name was Dimidium.
57 Pegasi. 5.1/9.7 separation 32.6”. Beautiful orange primary with blue companion.
NGC7078 (M15) (6.3) gc superb object.
NGC7331 (9.5) sg. Seen almost edge on.
About half a degree south is the fascinating group of galaxies "Stephan's Quintet". The brightest member of the group is NGC7320 (12.7).
Many happy hours can be spent wandering around "The Square" to locate many moderately bright galaxies. Use a star atlas such as the excellent "Sky Atlas 2000" to plan your journey.

Continued on next page.
**Pisces (Psc).**

Alpha (α) (4.2/5.1 sep. 1.5") ds. Requires a large aperture telescope using high magnification to split this pair of bluish-white stars.

Zeta (ζ) (5.6/6.2 sep. 23") ds. Fine white and yellow pair of stars.

35 (6.0/7.6 sep 7.6") ds. Fine yellow and blue pair.

51 (5.7/9.5 sep. 27.5") ds. Glorious bluish and greenish pair of stars.

65 (6.3/6.3 sep 4.4") ds. Fine matched pair of pale yellow stars.

Wolf 28 (12.3). Van Maanen’s Star. One of the few white dwarf stars visible in amateur telescopes.

NGC128 (11.8) sg. Brightest of a group of five galaxies.

NGC488 (10.3) sg. Elongated halo with brighter core.

NGC628 (M74) (9.4) sg. Seen face on and hence low surface brightness.

NGC7541 (11.7) sg. Elongated oval with bright core. 3’ to the SW is NGC7537 (13.0)

**Sculptor (Scl).**

Unfortunately this constellation never rises very high for UK observers so that only brief opportunities are presented to track down some deep-sky gems which unfortunately are not seen at their best even from a dark site. I have taken declination -30° as the southern limit for objects. This is almost the declination of the first magnitude star Fomalhaut (+1.16) which will give you a marker as to how low these objects are even at their highest when due south. The suitable observation window is thus fairly restricted!

NGC24 (11.5) sg. Located about two-thirds the way between NGC253 and β Cet.

NGC253 (7.1) sg. Seen highly inclined to our line of sight. Increasing magnification reveals mottling due to dust lanes. Head south for the best view of this gem.

NGC288 (8.1) gc. A loose globular which resolves readily with high power. The South Galactic Pole is about 1° to the SW.

NGC613 (10.0) sg. Elongated and fairly bright.

**Triangulum (Tri).**

Iota (ι) (5.3/6.9 sep. 3.9") ds. Fine contrasting yellow and blue pair of stars.

Struve (Σ)239 (7.0/8.0 sep. 13.8") ds. Fine pale yellow and pale blue pair of stars.

NGC598 (M33) (5.7) sg. Viewed face-on and hence has a low surface brightness making it an elusive object. Its visibility provides a good test for sky conditions using binoculars.

From dark sites and under good seeing conditions it is just visible to the naked eye and vies with M31 as the most distant object visible to the naked eye.

With 8"+ telescopes try to locate the vast star cloud NGC604. Good target for imaging.

NGC672 (11.6) sg. A bright barred spiral galaxy seen somewhat edge-on.

NGC925 (12.0) sg. Steeply inclined to our line of sight makes it fairly bright. NGC598

P.V.H.