“Ω > 1”

“Sky-Notes” of the Open University Astronomy Club.

November 2015.

Forthcoming Meetings.

OUAC Clubnight.

OUAC “Clubnight” on Tuesday 3rd November.

BAA meetings.

Details of BAA meetings at: www.britastro.org

Other Meetings.

Saturday November 7th. Leeds A.S. “Astromeet”.
Excellent event if prepared to travel.
Details at: www.leedsastronomy.org.uk

Highlights of the Month.

The fine conjunction between Venus, Mars and Jupiter in the predawn skies continues during the first week of the month.

2nd to 4th Very close conjunction between Mars and Venus, closest on 3rd.
6th & 7th The thin crescent Moon joins the predawn/dawn “Planet Show”.
5th & 12th Peaks of the Taurids meteor shower which is active throughout the month.
17th/18th Peak of Leonids meteor shower. Favourable conditions if clear.

Venus dominates the predawn/dawn E sky.
Mars is gradually becoming well placed for predawn observation.
Jupiter is becoming well placed for predawn observation.
Uranus is well placed for evening and early hour observation.
Neptune is well placed for evening observation.

Recent Events.
If you have any images and/or reports of recent events please contact Sheridan so that he can put them on the Club website.
If you wish to present them at a Clubnight meeting please contact Sheridan or myself before the meeting starts.

Software.
A very useful item of Planetarium software is “Stellarium” and it’s FREE! Go to their website and download it and the associated user manual.
1. The Solar system.

Note all times shown are UT.
Add one hour when British Summer Time is in operation.

Earth.

Aurora.
Long hours of darkness improve the opportunity for observing potential aurora.
Keep tuned to the www.spaceweather.com site for updates.
Subscribe (free!) to the UK AuroraWatch website to receive alerts.

ISS.
Go to the “spaceweather” website and click the “Flybys” button and follow the instructions
to set-up forecasts for your location. Alternatively go to the “Heavens Above” website and
set-up for your location. Add to your “favourites”.

Iridium Flares.
These satellites produce short lived “Bright events”. Some are very bright in the order of
magnitude -8. Take a wide-field image of with an exposure of 20 – 30 seconds to capture an
event. Regular observing of events brighter than -4 will provide useful practice for
estimating the magnitude of very bright meteors and Fireballs. Go to the “Heavens Above”
website and set-up for your location for predictions.

Sunrise and Sunset.

Bedford.
Latitude 52° 6.9’N Longitude 0° 28.1’W

<table>
<thead>
<tr>
<th>Date</th>
<th>Rise.</th>
<th>Transit.</th>
<th>Set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>06(^h) 56(^m)</td>
<td>11(^h) 45(^m)</td>
<td>16(^h) 34(^m)</td>
</tr>
<tr>
<td>08</td>
<td>07(^h) 09(^m)</td>
<td>11(^h) 45(^m)</td>
<td>16(^h) 22(^m)</td>
</tr>
<tr>
<td>15</td>
<td>07(^h) 21(^m)</td>
<td>11(^h) 46(^m)</td>
<td>16(^h) 11(^m)</td>
</tr>
<tr>
<td>22</td>
<td>07(^h) 34(^m)</td>
<td>11(^h) 48(^m)</td>
<td>16(^h) 02(^m)</td>
</tr>
<tr>
<td>29</td>
<td>07(^h) 45(^m)</td>
<td>11(^h) 50(^m)</td>
<td>15(^h) 55(^m)</td>
</tr>
</tbody>
</table>

Produced using “Starry Night Pro”.
The Sun.

Observing.

To prevent permanent damage to your eyes avoid looking at the Sun directly and never with binoculars or a telescope unless special (expensive!) filters are used. The safest way is the simplest – project the image of the Sun onto grey or white card.

If you have or have access to observe in h-alpha the rewards are much greater.

Keep in touch with the Solar Dynamics Observatory satellite at http://sdo.gsfc.nasa.gov/
Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

The Moon.

Phases:

- Last quarter: 03d 12h 24m
- New: 11d 17h 47m
- First quarter: 19d 06h 27m
- Full: 25d 22h 44m

Produced using “LunarPhase Pro”.
The Moon continued.

Apsides:

- Apogee: 07° 22h
- Diameter: 29’ 26”
- Distance: 405,720km.
- Perigee: 23° 20h
- Diameter: 32’ 55”
- Distance: 362,816km.

For northern observers:

- The waxing crescent Moon is not well placed.
- The waxing gibbous Moon is well placed.
- The Full Moon is very well placed.
- The waning gibbous Moon is very well placed.
- The waning crescent Moon is well placed.

Observing.

Observe the regions along the terminator (sunrise and sunset on the Moon) where the low angle of the Sun highlights lunar topography. A basic lunar map is all you need to get started. *Sky & Telescopes* “Lunar 100 Card” is another good starting point. If you are starting out on photography and/or imaging the Moon provides an excellent target.

Imaging and Observing Opportunity.

Pleasant conjunction with Jupiter, Mars and Venus from 6th to 8th. See below.

On 9th and 10th try locating the very thin crescent Moon very low in the E dawn skies before sunrise.

On 13th and 14th try locating the very thin crescent Moon SW evening twilight after sunset.

If you can take images of the above so much the better.

Lunar Occultations.

Unlike the gradual disappearance of a planet (small disc) a star vanishes instantly demonstrating that it is a point source of light as viewed from the earth. For all occultation events start observing 10 to 15 minutes before the predicted time to identify the required star and to allow for slightly different time if you are not at Greenwich. Use an accurate watch to record the time that you observe the occultation remembering that times are UT not BST. Enter details in your observing log.

Details of occultations can be found in current *BAA Handbook* and monthly periodicals such as *Astronomy Now* and *Sky at Night.*
The Planets.

The predawn/dawn planet show continues for the first week of the month although Mercury has effectively departed the scene. The thin crescent Moon joins in from the 6th to 8th so imaging opportunities are presented if clear for early risers.

Mercury.
May just be glimpsed very low in the E dawn skies east of Spica before sunrise at the very beginning of the month. \textit{Take great care if sweeping with binoculars as sunrise is not far away!}
Superior Conjunction on 17th.
Moon close on 11th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-0.99</td>
<td>5.1”</td>
<td>0.95</td>
<td>05h 54m</td>
<td>11h 08m</td>
<td>16h 22m</td>
</tr>
<tr>
<td>30</td>
<td>-0.78</td>
<td>4.7”</td>
<td>0.98</td>
<td>08h 35m</td>
<td>12h 20m</td>
<td>16h 05m</td>
</tr>
</tbody>
</table>

Venus.
Brilliant object in the E predawn/dawn skies.
Very close conjunction (41 arcmin) with Mars on 3rd.
Moon close on 7th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-4.3</td>
<td>23”</td>
<td>0.54</td>
<td>02h 31m</td>
<td>08h 53m</td>
<td>15h 15m</td>
</tr>
<tr>
<td>30</td>
<td>-4.2</td>
<td>18”</td>
<td>0.67</td>
<td>03h 34m</td>
<td>08h 59m</td>
<td>14h 24m</td>
</tr>
</tbody>
</table>

Mars.
Slowly gaining height in the E predawn/dawn skies.
Very close conjunction (41 arcmin) with Venus on 3rd.
Moon close on 7th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+1.7</td>
<td>4.3”</td>
<td>0.95</td>
<td>02h 33m</td>
<td>08h 57m</td>
<td>15h 21m</td>
</tr>
<tr>
<td>30</td>
<td>+1.5</td>
<td>4.7”</td>
<td>0.93</td>
<td>02h 18m</td>
<td>08h 07m</td>
<td>13h 56m</td>
</tr>
</tbody>
</table>

The Mars \textit{Curiosity} and \textit{Opportunity} rovers continue their explorations returning excellent data and images.
Mission details and progress are on the appropriate NASA websites.

Jupiter.
Becoming well placed for predawn observation and imaging.
Moon close on 6th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-1.8</td>
<td>33”</td>
<td>-</td>
<td>01h 59m</td>
<td>08h 31m</td>
<td>15h 08m</td>
</tr>
<tr>
<td>30</td>
<td>-2.0</td>
<td>36”</td>
<td>-</td>
<td>00h 28m</td>
<td>06h 55m</td>
<td>13h 21m</td>
</tr>
</tbody>
</table>
Saturn.
Not observable. Lost in SW evening twilight.
Conjunction with the Sun on 30th November.
Watch for reappearance low in ESE dawn skies in late December.
Moon close on 12th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Don’t forget to visit the Cassini mission websites at http://saturn.jpl.nasa.gov and http://ciclops.org

Uranus.
Located in Pisces and well placed for long hours of observation.
Moon close on 22nd.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+5.7</td>
<td>3.7”</td>
<td>-</td>
<td>15h 49m</td>
<td>22h 25m</td>
<td>05h 04m</td>
</tr>
<tr>
<td>30</td>
<td>+5.8</td>
<td>3.6”</td>
<td>-</td>
<td>13h 54m</td>
<td>20h 27m</td>
<td>03h 05m</td>
</tr>
</tbody>
</table>

Neptune.
Well placed in the SW for early to mid evening observation.
At mag +13.5 Neptune’s largest satellite, Triton, provides a good challenge for 8” telescopes under favourable sky conditions and when Triton is at max elongation E or W of Neptune. Use a high magnification - x200 or greater. Use “Stellarium” (Freeware) or similar software to determine favourable E and W elongations.
Moon close on 19th & 20th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+7.9</td>
<td>2.3”</td>
<td>-</td>
<td>14h 43m</td>
<td>19h 55m</td>
<td>01h 12m</td>
</tr>
<tr>
<td>30</td>
<td>+7.9</td>
<td>2.3”</td>
<td>-</td>
<td>12h 43m</td>
<td>17h 52m</td>
<td>23h 00m</td>
</tr>
</tbody>
</table>

Dwarf Planets.

Ceres. Located in Sagittarius. Mag +8.4 fading to +8.6 during the month.

Eris. A mag +18.7 target located in Cetus.

Haumea. A mag +17.3 CCD target located in Bootes, about 5° W of Arcturus. Becoming lost in WNW evening twilight.

MakeMake. A mag +17 CCD target in Coma Berenices. Low in the E predawn skies.

Pluto. Mag +14.5 object located in Sagittarius. Sinking into the early evening SW sky.
Asteroids. (Mag +10.5 or brighter).

Vesta (4). Located in Cetus. Almost due south mid-evening at the beginning of the month. Mag +6.3 fading to +6.8 during the month.

Ariadne (43). Moving through Taurus into Aries. Mag +10.8 at opposition on 18th.

Pales (49). Located in Taurus. Mag +10.7 at opposition on 25th.

Charts and details of asteroids one month either side of opposition are available at: http://britastro.org/computing/charts_asteroid.html
See also the BAA Handbook and/or monthly periodicals.

Comets.

C/2013 US10 Catalina.
Emerging into the predawn E sky during latter part of the month. At approx 5th mag it may just be naked eye at the end of the month becoming better placed for northern observers during December (moving through Virgo) and January. Something to look forward to.

Charts and details of selected comets are available at: http://britastro.org/computing/charts_comet.html
See also the BAA Handbook and/or monthly periodicals.

Meteor Showers.

The Taurids continue activity during November. Double radiant with two peaks on 5th (S) - ZHR = 10, and 12th (N) - ZHR = 10. Slow meteors with “bright events” possible.

The Leonids are active from the 15th to 20th with narrow peak activity on 18th 07h, ZHR = 20. Favourable, if clear, once the Moon has set.

There are always sporadic events and the chance of a brilliant fireball. The latter should be recorded and reported. See earlier note for using Iridium Flares as magnitude comparisons for “Bright Events”.

Near Earth Objects.

Please refer to www.spaceweather.com for updates.

Eclipses.

No Eclipses this month.

Abbreviations used.

M = Messier object. (Shown in **bold**).
NGC = New General Catalogue. IC = Index Catalogue. (Extension of the NGC).
ds = double star. ts = triple star. ms = multiple star. vs = variable star.
gc = globular cluster. oc = open cluster. pn = planetary nebula.
en = emission nebula. rn = reflection nebula. sg = spiral galaxy.
eg = elliptical galaxy. lg = lenticular galaxy. ir = irregular galaxy.
pg = peculiar galaxy. snr = super nova remnant. ly = light year.

The magnitude of an object, excluding double, triple, multiple and variable stars, is shown in brackets e.g. (6.5).
All magnitudes are + unless otherwise shown.

2.1 Variable Stars of the month.

Beta (β) Persei, Algol. Range 2.2 to 3.4, period 2.7 days. Well placed for evening observation. Minima at “social hour” occurs on 8\(^{d}\) 00.5\(^{h}\), 10\(^{d}\) 21.3\(^{h}\) and 30\(^{d}\) 23.0\(^{h}\).

Delta (δ) Cephei. Range 3.5 to 4.4, period 5.37 days. The prototype for the Cepheid class of variable stars. Their period-luminosity relationship has led them to being used as “standard candles” in measuring distances to nearby galaxies.

Mu (µ) Cephei. Range 3.7 to 5.0, approximate period 755 days. A semi-regular variable star famous for its striking red colour being fittingly called “Herschel’s Garnet Star”. It is the reddest naked eye star visible from the northern hemisphere. Its colour may show signs of variability.

Omicron (ο) Ceta, Mira. Currently (Nov/Dec) at minimum +9.3.

2.2 Double Stars of the month.

Gamma And. See notes below.
Gamma Ari. See notes below.
Struve (Σ) 326 Ari. See notes below.
Alpha Cas. See notes below.
Iota Cas. See notes below.
Eta Cas. See notes below.
Sigma Cas. See notes below.
Delta Cep. See notes below.
Struve (Σ) 2816 & 2819 Cep. See notes below.
Struve (Σ) 2840 Cep. See notes below.
8 Lac. Quadruple system. See notes below.
Eta Peg. See notes below.
Pi\(^1&2\) Peg. See notes below.
57 Peg. See notes below.
Zeta Psc. See notes below.
35 Psc. See notes below.
51Psc. See notes below.
Iota Tri. See notes below.
Struve (Σ) 239 Tri. See notes below.

An ongoing project for the OUAC Deep Sky Project Group is to image and measure a range of the colourful double stars.
2.3 This Month’s Constellations - Double Stars/Star Clusters/Nebulae/Galaxies.

Andromeda (And).

Gamma (γ) (2.2, 5.1) is a fine double star. The brighter component is golden-yellow with its companion a greenish-blue. Arguably second only to Albiro in Cygnus.

NGC205 (M110) (8.0) eg. A satellite galaxy of M31 visible as an elongated "smudge" in small telescopes.

NGC221 (M32) (8.2) eg. A satellite galaxy of M31. Visible as a fuzzy star in small telescopes.

NGC224 (M31) (3.5) sg. The Great Andromeda Spiral Nebula. Increasing aperture reveals more and more detail although increasingly smaller areas of the galaxy fill the eyepiece. 8” telescopes should reveal NGC206 as a hazy patch. It is a large area of star formation. 12” scopes will reveal one or two of M31’s large population of globular clusters.

NGC404 (11.9) lg. Located 6’ NW of β And. The 2nd magnitude star tends to drown the faint glow of the galaxy. Use high power to push the star out of the field of view for best results.

NGC752 (5.7) oc This large open cluster is located about 4 degrees south of γ.

NGC891 (10.1) sg. Located about 3 degrees east of γ is seen almost edge on. Bright central bulge. Moderate apertures will reveal a narrow dust lane bisecting the long axis. A fine object.

NGC7640 (12.5) sg. Seen nearly edge-on.

NGC7662 (8.6) pn. "The Blue Snowball". Rather small making it difficult to distinguish from nearby faint stars. High magnification on an 8” telescope will reveal an elliptical ring with a dark centre. Large apertures will show a faint second outer ring of nebulosity and the 13th magnitude central star.

Aries (Ari).

Gamma (γ) (4.8/4.8 separation 7.7”) ds. Fine equally bright bluish-white pair of stars. Accidentally discovered by Robert Hooke in 1664 while searching for a comet.

Lambda (λ) (4.9/7.7 sep. 37.4”) ds. Wide pair of pale yellow and pale blue stars.

Struve (Σ)326. (7.6/9.8 sep. 5.9”) ds. Beautiful orange and dull red pair of stars.

NGC772 (10.3) sg. Located almost 2° ESE of γ.

NGC877 (11.9) sg.

NGC972 (11.4) sg.

Cassiopeia (Cas).

Alpha (α) (2.2/8.9 sep. 64.4”) ds. Fine orange and blue pair. Part of a multiple system.

Iota (ι) (4.6/6.9/8.4 sep. AB 2.5”, AC 7.2”) ts. Beautiful white, yellow and blue triple system.

Eta (η) (3.4/7.5 sep. 12.9”) ds. Superb gold and garnet pair. The colours are very subjective. What do you see?

Sigma (σ) (5.0/7.1 sep. 3.0”) ds. Bluish white and yellow pair in a superb field.

NGC129 (6.5) oc.

NGC147 (9.3) eg. A satellite galaxy of M31.

NGC185 (9.2) eg. A satellite galaxy of M31.

NGC278 (10.9) eg. Located a few degrees SE of NGC185.

NGC457 (6.4) oc.

NGC581 (M103) (7.4) oc. Fine object.

NGC7654 (M52) (6.9) oc. Fine rich cluster.

NGC7789 (6.7) oc.

IC1805 (6.5) oc.

IC1848 (6.5) oc.
Cepheus (Cep).

Delta (δ) Cephei, 3.5 to 4.4 over a period 5.37 days, is the prototype for the Cepheid class of variable stars which because of their period-luminosity relationship has lead them to being used as "standard candles" in measuring distances to nearby galaxies. Pale blue +6.1 companion.

Mu (μ) Cephei 3.7 to 5.0 approximate period 755 days is a semi-regular variable star. It is more famous for its striking red colour being fittingly called "Herschel's Garnet Star". It is the reddest naked eye star visible from the northern hemisphere. Its colour may show signs of variability.

Struve (Σ) 2818 ts (5.7/7.5/7.5, sep 12”/20”). Fine triple with Struve (Σ) 2819 ds (7.4/8.6, sep 13”) in same field. All contained in the large, sparse and nebulous open cluster IC 1396!

Struve (Σ) 2840 ds (5.6/6.4, sep 18”). Very fine greenish/bluish pair.

Spiral galaxy NGC6946 (8.9) in the same 1° field as oc NGC6939. Two types of object for the price of one!

The faint reflection nebula NGC7023 and emission nebula IC 1396 provide a challenge to the observer. A dark clear sky is essential.

Lacerta (Lac).

Struve (Σ) 2876 (7.8, 9.3 sep 11.8”) ds. Fine blue and white double.

Struve (Σ) 2894 (6.1, 8.3 sep. 15.6”) ds. Yellow primary, blue secondary.

Struve (Σ) 2902 (7.6, 8.5 sep. 6.4”) ds. Yellow and white double.

8 Lacertae = Struve (Σ) 2922 (5.7, 6.5 sep. 22.4”) Multiple star. Brightest four components are white/blueish white. Has been described as a poor open cluster.

O Struve (Σ) 475 (6.8, 10.8 sep. 15.5”) ds. White primary with faint blue companion.

BL Lacertae (14 to 17). Prototype for class of quasi-stellar object (QSO).

Pegasus (Peg).

Eta (η) 2.9/9.9 separation 90.4”. Binocular object. Yellow and blue components but telescope require to see colour of secondary. Herscel’s “Pendulum Star” - tap telescope gentle for the effect.

Pi⁻¹/Pi⁻² (π⁻¹/π⁻²) 5.6/4.3 separation 7’). Fine binocular object. Pi⁻¹ is a multiple system with 4 companions of 10th to 12th magnitude.

57 PEGASI. 5.1/9.7 separation 32.6”. Beautiful orange primary with blue companion.

NGC7078 (M15) (6.3) gc superb object.

NGC7331 (9.5) sg. Seen almost edge on.

About half a degree south is the fascinating group of galaxies "Stephan's Quintet". The brightest member of the group is NGC7320 (12.7).

Many happy hours can be spent wandering around "The Square" to locate many moderately bright galaxies. Use a star atlas such as the excellent "Sky Atlas 2000" to plan your journey.
Pisces (Psc).

Alpha (α) (4.2/5.1 sep. 1.5") ds. Requires a large aperture telescope using high magnification to split this pair of bluish-white stars.

Zeta (ζ) (5.6/6.2 sep. 23") ds. Fine white and yellow pair of stars.

35 (6.0/7.6 sep 7.6") ds. Fine yellow and blue pair.

51 (5.7/9.5 sep 27.5") ds. Glorious bluish and greenish pair of stars.

65 (6.3/6.3 sep 4.4") ds. Fine matched pair of pale yellow stars.

Wolf 28 (12.3). Van Maanen’s Star. One of the few white dwarf stars visible in amateur telescopes.

NGC128 (11.8) sg. Brightest of a group of five galaxies.

NGC488 (10.3) sg. Elongated halo with brighter core.

NGC628 (M74) (9.4) sg. Seen face on and hence low surface brightness.

NGC7541 (11.7) sg. Elongated oval with bright core. 3' to the SW is NGC7537 (13.0)

Sculptor (Scl).

Unfortunately this constellation never rises very high for UK observers so that only brief opportunities are presented to track down some deep-sky gems which unfortunately are not seen at their best even from a dark site. I have taken declination -30° as the southern limit for objects. This is almost the declination of the first magnitude star Fomalhaut (+1.16) which will give you a marker as to how low these objects are even at their highest when due south. The suitable observation window is thus fairly restricted!

NGC24 (11.5) sg. Located about two-thirds the way between NGC253 and β Cet.

NGC253 (7.1) sg. Seen highly inclined to our line of sight. Increasing magnification reveals mottling due to dust lanes. Head south for the best view of this gem.

NGC288 (8.1) gc. A loose globular which resolves readily with high power. The South Galactic Pole is about 1° to the SW.

NGC613 (10.0) sg. Elongated and fairly bright.

Triangulum (Tri).

Iota (ι) (5.3/6.9 sep. 3.9") ds. Fine contrasting yellow and blue pair of stars.

Struve (Σ)239 (7.0/8.0 sep. 13.8") ds. Fine pale yellow and pale blue pair of stars.

NGC598 (M33) (5.7) sg. Viewed face-on and hence has a low surface brightness making it an elusive object. A good test for sky conditions using binoculars. From dark sites and under good seeing conditions it is just visible to the naked eye and vies with M31 as the most distant object visible to the naked eye. With 8"+ scopes try to locate the vast star cloud NGC604.

NGC672 (11.6) sg. A bright barred spiral galaxy seen somewhat edge-on.

NGC925 (12.0) sg. Steeply inclined to our line of sight makes it fairly bright. NGC598

P.V.H.