“Ω > 1”

“Sky-Notes” of the Open University Astronomy Club.

July 2015.

Forthcoming Meetings.

OUAC Clubnight.
OUAC Clubnights resume on Tuesday 1st September.

BAA meetings.
Details of BAA meetings at: www.britastro.org

Other Meetings.
None of note during July and August – Holiday season!

Highlights of the Month.
Two Full Moons occur in July on 2nd and 31st.
1st Very close conjunction between Jupiter and Venus. Separation slowly increasing.
6th Earth at Aphelion.
6th Pluto at opposition.
14th New Horizons Fly-By of Pluto and its satellites.
23rd Mercury at Superior Conjunction.
25th Ceres at opposition.
Venus. Follow the rapidly waning crescent with corresponding increasing apparent diameter as it heads towards Inferior Conjunction 15th August.
Jupiter is becoming less well placed in the W evening twilight.
Saturn is available for late evening through mid-night observation and imaging.
The spacecraft DAWN continues its mission in orbit around Ceres.
The ROSETTA spacecraft in orbit around comet C67P/Churyumov-Gerasimenko. Better still the Lander Philae has woken up! The mission now gets very exciting as the comet approaches perihelion in August.
The Noctilucent Cloud season continues.

Recent Events.
If you have any images and/or reports of recent events please contact Sheridan so that he can put them on the Club website.
If you wish to present them at a Clubnight meeting please contact Sheridan or myself before the meeting starts.

Software.
A very useful item of Planetarium software is “Stellarium” and it’s FREE! Go to their website and download it and the associated user manual.
1. The Solar system.

Note all times shown are UT.

Earth.

Earth at Aphelion July 6th 19h 40m, 152,093,481km

Aurora.
Short hours of darkness limit the opportunity for observing potential aurora.
Keep tuned to the www.spaceweather.com site for updates.
Subscribe (free) to the UK AuroraWatch website to receive alerts.

Noctilucent Clouds.
The Noctilucent Cloud season is continues. Scan the NW sky about an hour after sunset and
the NE sky an hour before sunrise for possible displays. With the Sun more “active”
displays may not be as impressive as those of a couple of years ago. The clouds are
distinctive by their silver-blue appearance and very photogenic.

ISS.
Go to the “spaceweather” website and click the “Flybys” button and follow the instructions
to set-up forecasts for your location. Alternatively go to the “Heavens Above” website and
set-up for your location. Add to your “favourites”.

Iridium Flares.
These satellites produce short lived “Bright events”. Some are very bright in the order of
magnitude -8. Take a wide-field image of with an exposure of 20 – 30 seconds to capture an
event. Regular observing of events brighter than -4 will provide useful practice for
estimating the magnitude of very bright meteors and Fireballs. Go to the “Heavens Above”
website and set-up for your location for predictions.

Sunrise and Sunset.

Bedford.
Latitude 52° 6.9’N Longitude 0° 28.1’W

<table>
<thead>
<tr>
<th>Date</th>
<th>Rise</th>
<th>Transit</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>03h 45m</td>
<td>12h 06m</td>
<td>20h 26m</td>
</tr>
<tr>
<td>08</td>
<td>03h 51m</td>
<td>12h 07m</td>
<td>20h 22m</td>
</tr>
<tr>
<td>15</td>
<td>03h 59m</td>
<td>12h 08m</td>
<td>20h 16m</td>
</tr>
<tr>
<td>22</td>
<td>04h 08m</td>
<td>12h 08m</td>
<td>20h 08m</td>
</tr>
<tr>
<td>29</td>
<td>04h 18m</td>
<td>12h 08m</td>
<td>19h 58m</td>
</tr>
</tbody>
</table>

Produced using “Starry Night Pro”.

Sun.

To prevent permanent damage to your eyes avoid looking at the Sun directly and never with binoculars or a telescope unless special (expensive!) filters are used. The safest way is the simplest – project the image of the Sun onto grey or white card.

If you have or have access to observe in h-alpha the rewards are much greater.

Keep in touch with the Solar Dynamics Observatory satellite at http://sdo.gsfc.nasa.gov/
Add the “Spaceweather” and the “Soho Lasco C3” websites to your “favourite” websites.

Moon.

Phases:
- Full: 02d 02h 20m
- Last quarter: 08d 20h 24m
- New: 16d 01h 42m
- First quarter: 24d 04h 04m
- Full: 31d 10h 43m

![Moon Phases Image](image)

Produced using “LunarPhase Pro”.

Apsides:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Perigee</td>
<td>05d 19h</td>
<td>Diameter. 32’ 32”</td>
<td>Distance. 367,094km.</td>
</tr>
<tr>
<td>Apogee</td>
<td>21d 11h</td>
<td>Diameter. 29’ 30”</td>
<td>Distance. 404,834km.</td>
</tr>
</tbody>
</table>

For northern observers:
The waxing crescent Moon is becoming less well placed.
The waxing gibbous Moon is less well placed.
The Full Moon is not well placed.
The waning gibbous Moon is becoming better placed.
The waning crescent Moon is very well placed.

Observing.
Observe the regions along the terminator (sunrise and sunset on the Moon) where the low angle of the Sun highlights lunar topography. A basic lunar map is all you need to get started. Sky & Telescopes “Lunar 100 Card” is another good starting point. If you are starting out on photography and/or imaging the Moon provides an excellent target.

Imaging opportunity.
During the first week and the last days of July early (very!) risers may wish to take the opportunity (if clear!) to image the terminator and limb of the last quarter and waning crescent Moon in the predawn and dawn skies. Libration plays a key part in what is visible on the limb.

A Challenge!
On 14th and 15th try locating the very thin crescent Moon very low in the ENE dawn skies before sunrise.
On 17th and 18th try locating the very thin crescent Moon W evening twilight after sunset.
If you can take images of the above so much the better.

Lunar Occultations.
Details of occultations can be found in current BAA Handbook and monthly periodicals such as Astronomy Now and Sky at Night.
Unlike the gradual disappearance of a planet (small disc) a star vanishes instantly demonstrating that it is a point source of light as viewed from the earth. For all occultation events start observing 10 to 15 minutes before the predicted time to identify the required star and to allow for slightly different time if you are not at Greenwich. Use an accurate watch to record the time that you observe the occultation remembering that times are UT not BST. Enter details in your observing log.
The Planets.

Mercury.
Best observed during the first two weeks of July low in the ENE dawn sky. Close conjunction with Mars on 16th but very low in NE just before sunrise. Superior Conjunction on 23rd. Watch for reappearance low in WNW evening twilight at the end of the month and early August. Moon close on N/A.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-0.1</td>
<td>6.9”</td>
<td>0.53</td>
<td>02h 35m</td>
<td>10h 36m</td>
<td>18h 38m</td>
</tr>
<tr>
<td>15</td>
<td>-1.4</td>
<td>5.3”</td>
<td>0.92</td>
<td>03h 05m</td>
<td>11h 27m</td>
<td>19h 48m</td>
</tr>
<tr>
<td>31</td>
<td>-1.4</td>
<td>5.1”</td>
<td>0.95</td>
<td>05h 02m</td>
<td>12h 44m</td>
<td>20h 25m</td>
</tr>
</tbody>
</table>

Keep in touch with data and images from the Messenger Spaceprobe at http://messenger.jhuapl.edu

Venus.
Brilliant object in the W evening twilight. However by the end of the month it sets only 10 minutes after the Sun. Close conjunction with Jupiter on 1st with separation slowly widening. Moon close on 18th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-4.4</td>
<td>34”</td>
<td>0.34</td>
<td>07h 39m</td>
<td>15h 02m</td>
<td>22h 34m</td>
</tr>
<tr>
<td>31</td>
<td>-4.3</td>
<td>52”</td>
<td>0.08</td>
<td>06h 51m</td>
<td>13h 28m</td>
<td>20h 04m</td>
</tr>
</tbody>
</table>

Mars.
Just past conjunction with the Sun on 14th June. Close conjunction with Mercury on 16th but very low in NE just before sunrise. May just be spotted low in NE predawn sky towards the end of the month. Moon close on N/A.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>+1.7</td>
<td>3.6”</td>
<td>0.99</td>
<td>03h 02m</td>
<td>11h 13m</td>
<td>19h 24m</td>
</tr>
</tbody>
</table>

The Mars Curiosity rover continues to return excellent data and images. The Opportunity rover continues its exploration. Mission details and progress are on the appropriate NASA websites.

Jupiter.
Sinking into the W evening twilight. Close conjunction with Venus on 1st with separation slowly widening. Moon close on 18th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-1.8</td>
<td>32”</td>
<td>-</td>
<td>07h 38m</td>
<td>15h 02m</td>
<td>22h 26m</td>
</tr>
<tr>
<td>31</td>
<td>-1.7</td>
<td>31”</td>
<td>-</td>
<td>06h 14m</td>
<td>13h 27m</td>
<td>20h 40m</td>
</tr>
</tbody>
</table>
Saturn.
Available for late evening through mid-night observing and imaging.
Moon close on 5th & 6th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+0.2</td>
<td>18”</td>
<td>-</td>
<td>16h 47m</td>
<td>21h 13m</td>
<td>01h 38m</td>
</tr>
<tr>
<td>31</td>
<td>+0.4</td>
<td>17”</td>
<td>-</td>
<td>14h 46m</td>
<td>19h 12m</td>
<td>23h 37m</td>
</tr>
</tbody>
</table>

Don’t forget to visit the Cassini mission websites at http://saturn.jpl.nasa.gov and http://ciclops.org

Uranus.
An “early hour” object in the E to S predawn sky.
Moon close on 9th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+5.8</td>
<td>3.5”</td>
<td>-</td>
<td>23h 57m</td>
<td>06h 42m</td>
<td>13h 22m</td>
</tr>
<tr>
<td>31</td>
<td>+5.8</td>
<td>3.6”</td>
<td>-</td>
<td>22h 00m</td>
<td>04h 45m</td>
<td>11h 26m</td>
</tr>
</tbody>
</table>

Neptune.
A midnight and “early hour” object in the SE to S predawn skies.
Moon close on 5th.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+7.9</td>
<td>2.3”</td>
<td>-</td>
<td>22h 51m</td>
<td>04h 13m</td>
<td>09h 30m</td>
</tr>
<tr>
<td>31</td>
<td>+7.8</td>
<td>2.3”</td>
<td>-</td>
<td>20h 52m</td>
<td>02h 13m</td>
<td>07h 30m</td>
</tr>
</tbody>
</table>

Dwarf Planets.

Ceres. Located on the borders of Capricornus and Microscopium. Mag +7.2 at opposition on 25th.

Eris (2003 UB313). An 18th mag CCD target located in Cetus. Low in the SE predawn sky.

Haumea. A 17th mag CCD target located in Bootes.

MakeMake. A 17th mag CCD target in Coma Berenices.

Pluto. Mag +14.3 object located in Sagittarius. Opposition on 6th July. On 14th the New Horizons spaceprobe makes its Fly-By of Pluto and its satellites. What will it reveal about this remote system? Exciting times!

Asteroids. (Approx Mag +10.5 or brighter).

Vesta (4). Located in Cetus low in SE predawn sky. Mag +6.7 to +6.3

Pallas (2). Located in Hercules. Fading slowly from mag +9.5 to +9.8 during the month. Very close to Delta (Sarin)(+3.1) at the start of the month, only 8 arcmin S on the 3rd! Image opportunities.

Charts and details of asteroids one month either side of opposition are available at: http://britastro.org/computing/charts_asteroid.html

See also the *BAA Handbook* and/or monthly periodicals.
Comets.

67P/Churyumov – Gerasimenko.
A predawn object moving through in Taurus heading towards perihelion in August accompanied by ROSETTA. Brightening slowly from about magnitude 13 it passes the eastern edge of the Hyades mid-month and will be about 2° NE of zeta and the Crab Nebula at the end of the month.
With Rosetta continuing to monitor this comet through perihelion the unique opportunity is presented to observe and image it from the OU with the 16”.
From early July through perihelion in mid-August and into September the comet will be around 12th magnitude and well placed for Northern observers.
See ROSETTA Ground Based Campaign.

Philae has woken up!

C/2014 Q1 PanSTARRS. Although predicted to be a 4th magnitude object it will be very difficult to locate very low in the NW evening twilight at the beginning of the month. Between the 5th and 7th it passes between Castor and Pollux in Gemini.

141P/Machholtz. Although predicted to be a 12th magnitude object the interest in this object is that it will pass in front of the galaxy M33 in Triangulum on 9th/10th and the California Nebula in Perseus from 26th to 28th July. Imaging opportunities!

Charts and details of selected comets are available at:
http://britastro.org/computing/charts_comet.html
See also the BAA Handbook and/or monthly periodicals.

Meteor Showers.

The Ophiuchids. Weak activity continues from several radiants during July. Not well placed for northern observers.
The Cygnids. Weak activity during July and August with two peaks on 20th July and 21st August, both with ZHR = 5.
The Capricornids. Weak activity active during July and August with three peaks on 8th, 15th and 26th July, all with ZHR = 5.
The Delta Aquarids. Aactive from mid July to mid August with two peaks on 29th July and 6th August, with ZHR = 20 and 10 respectively. A fine “southern” shower.
The Persieds. Active from 23rd July to 20th August. Low rates but increasing with approach to maximum on 12th August, ZHR = 80. More in August “Sky Notes”.

There are always sporadic events and the chance of a brilliant fireball. The latter should be recorded and reported.

Near Earth Objects.

Please refer to www.spaceweather.com for updates.

Eclipses.

No eclipses this month.

Abbreviations used.
\(M \) = Messier object. (Shown in bold).
NGC = New General Catalogue. IC = Index Catalogue. (Extension of the NGC).
ds = double star. ts = triple star. ms = multiple star. vs = variable star.
gc = globular cluster. oc = open cluster. pn = planetary nebula.
en = emission nebula. rn = reflection nebula. sg = spiral galaxy.
eg = elliptical galaxy. lg = lenticular galaxy. ir = irregular galaxy.
p = peculiar galaxy. snr = super nova remnant. ly = light year.

The magnitude of an object, excluding double, triple, multiple and variable stars, is shown in brackets e.g. (6.5).
All magnitudes are + unless otherwise shown.

2.1 Variable Stars of the month.

\textbf{Beta (β) Persei, Algol.} Range 2.2 to 3.4, period 2.7 days. Low in N “dark skies” so not well placed for observations. Minima at “social hours” occur on \(01^d 23.7^h, 04^d 20.5^h\) and \(24^d 22.3^h\).

\textbf{Delta (δ) Cephei.} Range 3.5 to 4.4, period 5.37 days. The prototype for the Cepheid class of variable stars. Their period-luminosity relationship has led them to being used as “standard candles” in measuring distances to nearby galaxies.

\textbf{Mu (μ) Cephei.} Range 3.7 to 5.0, approximate period 755 days. A semi-regular variable star famous for its striking red colour being fittingly called “Herschel’s Garnet Star”. It is the reddest naked eye star visible from the northern hemisphere. Its colour may show signs of variability.

2.2 Double Stars of the month.

\textbf{Pi Aql.} See notes below.
\textbf{Beta Cyg. Albireo.} See notes below.
\textbf{Nu Dra.} See notes below.
\textbf{Alpha Her.} See notes below.
\textbf{Kappa Her.} See notes below.
\textbf{Epsilon Lyr.} See notes below.
\textbf{Omicron Oph.} See notes below.
\textbf{Alpha Sco.} See notes below.
\textbf{Beta Sco.} See notes below.
\textbf{Delta SerCp.} See notes below.
2.3 This Month’s Constellations - Double Stars/Star Clusters/Nebulae/Galaxies.

Aquila (Aql).
Alpha (α Aql, Altair (0.8))
Pi (π) Aql. (6.1/6.9, separation 1.4") ds. Pleasing close pair of yellow stars.
11 Aql. (5.2/8.7, separation 17.5") ds. Pale yellow primary, blue secondary.
15 Aql. (5.5/7.2, separation 38.4") ds. Pale yellow primary, yellow secondary.
NGC6709 (6.7) oc. Fine object for small telescopes.
NGC6741 (11.4) pn. Almost stellar at low power. Requires high magnification. Greenish-blue.
NGC6755 (7.5) oc. Another fine object for small/moderate telescopes.
NGC6756 (10.6) oc. ½° SSW of NGC6755 and visible in the same low power field of view.
NGC6781 (11.4) pn. Fairly large, almost round object in rich star field.
NGC6790 (10.5) pn. Almost stellar at low power. Requires high magnification. Blue.
Aquila contains a number of moderately bright planetary nebulae for the “collector”.

Cygnus (Cyg).
β Cyg, Albireo (3.2/5.4, separation. 34.3") ds. Marking the head of the swan this splendid double star consists of a yellow-orange star (3.2) and a bluish star (5.4) providing a beautiful contrast. Easily photographed.
61 Cygni (5.3/5.9, separation 28.4") ds. Worth locating as it holds the distinction of being the first star to have its distance, 3.4pc, measured. (Friedrich Bessel in 1838 using parallax).
NGC6826 (9.8) pn. This interesting planetary nebula is located about 6° north of δ. Nicknamed the "Blinking Nebula" because when viewed directly only the central star (10.4) is seen, but, with averted vision the shell of the nebula springs into view and the central star appears to dim or disappear. Look back at the star and the shell disappears and the star "returns". Hence “blink”.
NGC6871 (5.2) oc. Lies in rich star fields of the Milky Way.
NGC6888 (11.0) snr. Southwest of M29 this is object provides a difficult visual challenge. Dark transparent skies are essential and a nebular filter will help. A good target for CCD imagers.
NGC6910 (7.4) oc. Fine open cluster.
NGC6913 (M29) (6.6) oc. Large scattered cluster of stars. Surrounding the M29 area and centred on γ Cyg is the vast emission nebula IC1318 separated by dark dust lanes into five major areas.
NGC6960/6979/6992-5 (7.0) snr. One of the most beautiful deep-sky objects can be found in the "east wing" of Cygnus. This is the "Veil/Filament nebula", a supernova remnant (SNR). Although it shows up well in photographs it can be frustratingly difficult to see visually, partly because of its large angular size. A dark, transparent sky is essential and the use of a UHC filter will pay rich rewards. The western "Filament" NGC6960 is located by the star 52 Cygni which should be identified first. Then sweep eastwards to locate the slightly brighter "Veil" NGC 6992-95. The central "wedge" NGC 6979 is rather faint but patience will reap rewards. Once the "Veil" and "Filament" have been recognized identification without a filter becomes easier although the view is less impressive. An 8" telescope with increasing magnification begins to reveal the delicate "lacy" structure. A small telescope using a low power wide-field eyepiece + filter reveals the complete circular outline which is some 3° across.
NGC7000 (4.5) en. From a dark site the ghostly glow of the "North American Nebula", may just be detected east of Deneb (1.3) by the unaided eye. It shows up well in photographs together with the adjacent IC5067/70, the "Pelican Nebula".
NGC7027 (10.4) en. Strange object identified as a star, then a planetary nebula and currently an emission nebula.
NGC7048 (11.3) pn.
NGC7092 (M39) (4.6) oc. Compact cluster of stars.
Draco (Dra).

Alpha (α) Thuban. Although only a third magnitude object, 5000 years ago Thuban held the distinction of being the Pole Star. Its designation alpha is strange as it is only the seventh brightest star in the constellation.

Mu (μ) ds. 5.6/5.7; separation 1.9”. Pair of white stars.

Nu (ν) ds. 4.9/4.9; separation 61.9”. Pair of bright white stars.

Psi (ψ) ds. 4.9/6.1; separation 30.3”. Pair of yellowish stars.

16 & 17 ds. 5.4/5.5; separation 90.3”. Pair of bright white stars.

40 & 41 ds. 5.7/6.1; separation 19.3”. Pair of pale yellow stars.

Struve (Σ) 2155 ds. 6.8/10.1; separation 9.8”. Pale yellow and blue pair.

NGC4319 (9.6) sg. Seen almost edge and low surface brightness makes it a test for moderate apertures.

NGC5866 (M102) lg. Elongated object. One of the missing Messier objects.

NGC5907 (10.3) sg. Thin needle of light. A fine edge-on galaxy.

NGC6503 (10.2) sg. Distinctly elongated.

NGC6543 (8.1) pn. The Cats Eye Nebula. Bright small disc with greenish tint. 11th magnitude central star. Draco’s “Showpiece object”.

Hercules (Her).

Alpha (α) ds. 3.5/5.4 separation 4.7”. Orange and blue. The primary is a semi regular variable 3.1 to 3.9 approx period 90 days.

Gamma (γ) ds. 3.8/9.8; separation 41.6”. Unequally bright pair of yellow stars. Part of a triple system.

Delta (δ) ds. 3.1/8.2 separation 8.9”. White primary with bluish-purple secondary. Part of a multiple system.

Kappa (κ) ds. 5.3/6.5; separation 28.4”. Fine pair of yellow stars. Part of a triple system.

Mu (μ) ds. 3.4/10.1 separation 10.1”. Yellow primary. Secondary 1” wide pair of red stars. Part of a quad system.

Rho (ρ) ds. 4.6/5.6 separation 4.1”. White pair. Part of a triple system.

56 Herculis ds. 6.1/10.6 separation 18.1”. Fine contrasting orange and blue pair.

100 Herculis ds. 5.9/6.0 separation 14.2”. Matched pair of white stars.

NGC6205 (M13) (5.9) gc. Arguably one of the outstanding objects in the northern hemisphere. Just visible to the naked eye from dark sites it appears as a fuzzy blob in binoculars. It stands high power well and the outer edges begin to resolve into individual stars in a 4” (100mm) telescope. Increasing aperture brings greater rewards. Lord Rosse and others using the 72” at Birr Castle in the 19th century observed three dark rifts radiating from the centre. Later visual observers confirmed these. However with the advent of photography the rifts disappeared. In the 1950’s the late Walter Scott Houston in his "Sky and Telescope” column revised interest in the "propeller". Responses indicated that visibility of the rifts depended on a careful balance of aperture and magnification. Today a dark sky is probably a key factor.

NGC6207 (11.6) sg. 40” to the NE of M13 and in the same field as a low power widefield eyepiece. This moderately bright galaxy is often overlooked due to the spectacular blaze of the much closer globular cluster.

NGC6210 (9.3) pn. Located about 4o NE of beta (β) Her.

NGC6229 (9.4) gc. Located about 7o NW of M13 and well worth locating and imaging.
Hercules continued.
NGC6341 (M92) (6.5) gc. Slightly fainter and smaller than M13 this globular cluster deserves equal attention. It starts to resolve in a 6" telescope at high power and becomes increasingly impressive with increased aperture.
The area around M13 contains a number of faint galaxies requiring a large (12"+) telescope to explore. Identity of the objects can prove interesting as some are wrongly labelled on some charts and catalogues.
Abell 2151. The Hercules Galaxy Cluster.

Lyra (Lyr).
Alpha (α) Lyr Vega (0.04). The fifth brightest star (Sun excluded) in the sky is worth mentioning as due to the effects of precession Vega will hold the distinction of being the pole-star in about 12,000 years time. Infrared studies indicate that it may be surrounded by a disc of planetary forming material.
Delta (δ) ds.4.5/5.5 separation 10.5") ds. Comprises bluish-white and ruddy orange components. One of the finest double stars for small telescopes.
Epsilon (ε) ds/ds. 5.5/6.5 separation 2.8"; 5.0/5.5 separation 2.2". The two pairs are separated by 208". The famous "double-double" star. Splitting the image into the four components with a small telescope provides a good indication of seeing conditions.
Struve (Σ) 2470 + 2474 ds/ds. 6.6/8.6 separation 13.4"; 6.7/8.8 separation 16.2". White and blue-white pair together with a pair of pale yellow stars. Lyra’s other “double-double”.
13-R Lyrae vs. 3.8 to 5.0, period 46 days. Fine red-orange semi-regular variable star well suited for binoculars and small telescopes.
NGC6702 (12.2) eg. Diffuse halo with slight central brightening. Locate NGC6703 and move 12’ NNW.
NGC6703 (11.4) lg. Located in the northern reaches of Lyra.
NGC6710 (12.8) lg. Located on the southern borders of Lyra.
NGC6720 (M57) (9.7) pn. The famous "Ring Nebula" appears as a ghostly smoke ring. Visible as a faint out of focus star M57 at low power it is best seen in telescopes responding well to high powers. The use of filters, UHC and/or OIII, improve contrast. The magnitude 14.8 central star is unlikely to be seen without a large telescope.
NGC6779 (M56) (8.2) gc. Often overlooked this globular cluster is located about halfway between β and λ on the borders of the rich star fields of the Milky Way.
NGC6791 (9.5) oc. Requires medium to large telescopes to begin to resolve into individual stars the brightest of which are 13th magnitude.

Ophiuchus (Oph).
Barnard’s Star. (9.5). Located at R.A. 17h 58m Dec. +04° 41m. A red dwarf with the largest proper motion of any star in the sky as seen from the Earth.
Lambda (λ) ds. 4.2/5.2 separation 1.5". White and pale yellow pair. Part of a quadruple system.
Omicron (ο) ds. 5.4/6.9 separation 10.3". Fine contrasting pair of orange and yellow stars.
Rho (ρ) ds.5/3.6/0 separation 3.1". Close pair of blue stars.
NGC6171 (M107) (8.1) gc. Granular texture with brighter core in small apertures.
NGC6218 (M12) (6.6) gc. Outer reaches resolved in medium apertures showing with a small core.
NGC6254 (M10) (6.6) gc. Granular halo with bright core. Outer reaches resolved in small apertures.
NGC6266 (M62) (6.7) gc. Bright off centre core with fainter halo.
NGC6273 (M19) (7.1) gc. Small bright globular. Outer reaches begin to resolve in small apertures.
NGC6333 (M9) (7.9) gc. Large bright core. Nearby is the dark nebula Barnard 64.
Ophiuchus continued.
NGC6356 (8.4) gc. Requires large apertures to resolve.
NGC6402 (M14) (7.6) gc. Requires large aperture to resolve. The most distant of the Messier gc’s.
NGC6572 (8.1) pn. Fine bright greenish object.
NGC6633 (4.6) oc. Large, bright but loose open cluster well suited for small aperture.

Sagitta (Sge).
NGC6838 (M71) (8.3) gc. Almost lost in the foreground stars of the Milky Way. A relatively poor globular which for a time was considered to be a rich open cluster. It is a young cluster containing "metal" rich stars.

Sagittarius (Sgr).
Sagittarius contains many fine objects unfortunately not well seen from our latitudes. The Galaxies centre lies in this direction obscured by intervening stars, gas and dust.
M24 (4.5) originally thought to be an open cluster is now classed as a star-cloud.
NGC6494 (M23) (5.5) oc
NGC6514 (M20) (6.3) en & rn. The "Trifid Nebula"
NGC6523 (M8) (5.8) en. the "Lagoon Nebula".
NGC6531 (M21) (5.9) oc,
NGC6618 (M17) (6.0) the "Omega Nebula",
NGC6626 (M28) (6.9) gc,
NGC6637 (M69) (7.7) gc
NGC6656 (M22) (5.1) gc
NGC6681 (M70) (8.1) gc. Comet Hale-Bopp was discovered close to M70.
NGC6715 (M54) (7.7) gc,
NGC6809 (M55) (6.9) gc,
NGC6864 (M75) (8.6) gc.
IC4725 (M25) (4.6) oc. Pluto currently crossing southern regions of this cluster.

Scorpius (Sco).
Alpha (α) Antares ds. 1.2/5.4 separation 2.9". Red-orange primary with fainter greenish companion. Difficult to split requiring very good seeing conditions.
Beta (β) ds. 2.6/4.9 separation 13.6". Blue-white primary with pale blue companion. Fine object for small telescopes.
Nu (ν) 4.3/6.8 separation 2.3” ds. Pair of white stars requiring good seeing conditions to split.
NGC6093 (M80) (7.2) gc. Fine object unfortunately not well seen from the UK.
NGC6121 (M4) (5.9) Fine globular unfortunately not well seen from the UK.
NGC6405 (M6) (4.2) oc. Unfortunately it briefly creeps above the southern horizon making it very difficult to observe from the UK.
NGC6475 (M7) (3.3) oc. Another fine object that unfortunately briefly creeps above the southern horizon making it very difficult to observe from the UK.

Scutum (Sct).
Contains a brighter part of the Milky Way known as the "Scutum Star-cloud".
NGC6705 (M11) (5.8) oc. The "Wild Duck" is a fine sight in telescopes and is easily located in binoculars.
NGC6694 (M26) (8.0) oc. Fainter than M11 but easily located.
Serpens Caput (SerCp).
Beta (β) ds. 3.7/9.9; separation 30.6”. Pale yellow primary with blue secondary.
Delta (δ) ds. 4.2/5.2; separation 4.4”. Fine pair of yellow stars.
5 Serpentis ds. 5.1/10.1; separation 11.2”. Yellow primary with reddish secondary. Situated in same field as M5.
NGC5904 (M5) (5.8) gc. Splendid object which stands high magnification.
NGC5921 (10.8) sg. Faint oval halo with bright core.

Serpens Cauda (SerCd).
Nu (ν) ds. 4.3/8.3 separation 46.3”. Wide pair of green and pale blue stars.
Struve (Σ) 2303 ds. 6.6/9.1 separation 2.1”. Good optical test for small instruments.
Theta (θ) ds. 4.6/5.0 separation 22.3”. Bluish-white pair of stars suitable for binoculars.
NGC6611 (M16) (6.0) oc & en. Bordering naked eye visibility this nebula and its associated star cluster forms one of the most well known HST images - "Pillars of Creation”.

Vulpecula (Vul).
Collinder 399 (3.6) oc. Aptly named the "Coat-hanger" this cluster is visible to the naked eye as a hazy patch. A fine site in binoculars.
NGC6853 (M27) (7.6) pn. The "Dumbbell Nebula", is easily seen in binoculars. The "dumbbell" shape becomes more recognizable in telescopes with increasing magnification. In common with other planetary nebulae it responds well to filters especially the OIII type.

PVH.